
RANDOM NUMBER GENERATION,
REVISITED

Yevgeniy Dodis (New York University)

Joint work with David Pointcheval, Sylvain Ruhault, Damien Vergnaud and Daniel Wichs

RNG
RNG

0010101101
1001100111

…

Fresh & Independent
Random & Unbiased

1001001110

Random Number Generators (RNGs)

Input I

State S

Random Number Generators (RNGs)

Output R

refresh
State S

next

� refresh(current S, I) = new S

� runs in background

� input I possibly adversarial
(but must “have entropy”)

� Goal: “entropy accumulation”

� next(current S) = (new S, R)
� runs when called by user

� output R “looks random”
(if “not compromised”)

???

Theory vs. Practice

Case study: Linux /dev/random

� complex: over 800 lines of code

� “security=by=obscurity” (appears)
� everything ad hoc and heuristic

� uses “cryptographic hashing” (SHA1),
but in ad hoc manner

� keeps multiple “entropy pools”

� (most complex) key components:
� heuristic “mixing function” M

� ad=hoc “entropy estimation” E

� completely unintuitive

� no security proof

Case study: [BH05] RNG

� formal, intuitive model

� simple, natural construction
� much simpler than “practice”

� elementary security proof

� “trivialize” the heart of real=
world RNGs:
� no entropy estimation, entropy

pools or mixing function

� strong advice against entropy
estimation

� no “entropy accumulation”
(model or construction)

Theory vs. Practice

Case study: Linux /dev/random

� complex: over 800 lines of code

� “security=by=obscurity” (appears)
� everything ad hoc and heuristic

� uses “cryptographic hashing” (SHA1),
but in ad hoc manner

� keeps multiple “entropy pools”

� (most complex) key components:
� heuristic “mixing function” M

� ad=hoc “entropy estimation” E

� completely unintuitive

� no security proof

Case study: [BH05] RNG

� formal, intuitive model

� simple, natural construction
� much simpler than “practice”

� elementary security proof

� “trivialize” the heart of real=
world RNGs:
� no entropy estimation, entropy

pools or mixing function

� strong advice against entropy
estimation

� no “entropy accumulation”
(model or construction)

Recover from compromise as long as
the total amount of fresh entropy
accumulated over some potentially
long period time crosses a threshold e*

Theory vs. Practice

Case study: Linux /dev/random

�Good security intuition,
but too complex, and
too much reliance on

heuristics
(security=by=obscurity)

Case study: [BH05] RNG

�Nice and clean, but
“over=simplified”
reality, failing to
account for a key
security concern

Our Results

� New rigorous model for RNG security

� Captures “entropy accumulation” (and more)

� Explicit (adversarial) “distribution sampler”

� Explicit attacks on both theory (Barak=Halevi)
and practice (Linux /dev/random)

� Provably Secure Construction

� As simple/efficient as Barak=Halevi (+ secure)

� Cleaner and more efficient than /dev/random

Our RNG Model

� Two adversaries: and

� : Distribution sampler D (“Devil”)

� outputs “entropic” inputs I1, I2, … (and more)

� explicitly models (adversarial) “nature”

� : (traditional) Attacker A (“Alice”)

� tries to distinguish outputs of RNG from truly
random strings (when RNG is “uncompromised”)

� has power to “compromise” RNG or call

Provably Secure Construction (simplified)

� Let k – security parameter, n = e* = 3k

� chop
k
(x) – truncation of n=bit string x to k bits

� G:{0,1}k
→{0,1}4k pseudorandom generator

� Define RNG= (setup, refresh, next) as follows
(here length(S) = length(I) = n, length(R)=k):

� setup(): output random n=bit string x,y

� refreshx,y(S,I): set S ← S⋅x + I (multiply in GF[2n])

� nextx,y(S): set (S,R) ← G(chop
k
(S⋅y))

Lessons Learned

� Security=by=obscurity is so 20=th century!

� We can do better now!

Paper to appear at CCS’2013
Full version available at

http://eprint.iacr.org/2013/338

