RANDOM NUMBER GENERATION,
REVISITED

Joint work with David Pointcheval, Sylvain Ruhault, Damien Vergnaud and Daniel Wichs

- Yevgeniy Dodis (New York University)

Random Number Generators (RNGs)

100100

111
Fresh & Independent JOO1010110
Random & Unbiased |1001100T]1

\ y

~
O
1
1

Random Number Generators (RNGs)

T
Input |

@_

Output R

refresh

m===)| State S

\V4

0 refresh(current S, I) = new S

State S |==)

U

0 next(current S) = (new S, R)

runs in background runs when called by user

input | possibly adversarial output R “looks random”

(if “not compromised”)

26 R

(but must “have entropy”)

7

Goal: “entropy accumulation

THEORY

120. What isthe most importont ?"“'"""_‘j th
pati t 7

ar

Theory vs. Practice

]
Case study: Linux /dev/random Case study: [BHO5] RNG

2 complex: over 800 lines of code o formal, intuitive model

& “security-by-obscurity” (appears) | @simple, natural construction
everything ad hoc and heuristic much simpler than “practice”
uses “cryptographic hashing” (SHAT), elementary security proof
but in ad hoc manner & “trivialize” the heart of real-

11 keeps multiple “entropy pools” world RNGs:

0 (most complex) key components: no entropy estimation, entropy

heuristic “mixing function” M pools or mixing function

strong advice against entropy

ad-hoc “entropy estimation” E 2
estimation

% completely unintuitive 3 " T
9 P 7 9 no “entropy accumulation

@ no security proof (model or construction)

THEORY

120. Whot isthe most importort priovity in
atient +runspor1‘ e
uate itovin

Theory vs. Practice

]
Case study: Linux /dev/random Case study: [BHO5] RNG

£]
»

& complex
o “securitt Recover from compromise as long as ction

svery the total amount of fresh entropy °'°ﬁf°e
uses roo
butin accumulated over some potentially ¢ ...

- keepsm Jong period time crosses a threshold e*

71 (most cor. 1, entropy

heuristic “mixing function” M AXing tunction

ad-hoc “entropy estimation” E - .dece against entropy
es, .dafion

@ completely unintuitive 2 " .
9 P Y D no “entropy accumulation

& no security proof (model or construction)

Theory vs. Practice .

- 'PRACTLCE
Case study: Linux /dev/random Case study: [BHO5] RNG

1 Good security intuition,| Nice and clean, but

but too complex, and “over-simplified”
too much reliance on reality, failing to
heuristics account for a key

(security-by-obscurity) security concern

QOur Results

New rigorous model for RNG security
Captures “entropy accumulation” (and more)
Explicit (adversarial) “distribution sampler” i

Explicit attacks on both theory (Barak-Halevi)
and practice (Linux /dev/random)

Provably Secure Construction
As simple /efficient as Barak-Halevi (+ secure)

Cleaner and more efficient than /dev/random

Our RNG Model

Two adversaries: g’ and @@,

S;: Distribution sampler D (“Devil”)

outputs “entropic” inputs I, |, ... (and more)

explicitly models (adversarial) “nature”

@gn (traditional) Attacker A (“Alice”)

tries to distinguish outputs of RNG from truly
random strings (when RNG is “uncompromised”)

has power to “compromise” RNG or call g,

Provably Secure Construction (simplified)
—

- Let k — security parameter, n = e* = 3k
7 chop,(x) — truncation of n-bit string x to k bits
1G:{0,11% —10,1}* pseudorandom generator

1 Define RNG= (setup, refresh, next) as follows
(here length(S) = length(l) = n, length(R)=k):
setup(): output random n-bit string x,y
refresh, (S,1): set S <= S-x + [(multiply in GF[27])
next, (S): set (S,R) <= G(chop,(S-y))

Lessons Learned
-

11 Security-by-obscurity is so 20-th century!

1 We can do better now!

Paper to appear at CCS'2013
Full version available at

http://eprint.iacr.org/2013/338

TOUR OF ACCOUNTING |§ il ane
8 NIME NINE i| vou THAT'S THE
OVER HERE s NIMNE NINE H N PRQFEL::;&N
WE HAVE OUR g NINE NINE | THATS EHMHE -
MHDG‘H HUHBER ﬁ E R#\HDGM? D E'El'
: YOU CAN
GENERATOR. .
- R NEVER BE
d = 5 SURE.
1= -
8 g
1 5
Bl H

