
SCAPI
The Secure Computation Application Programming Interface

http://crypto.biu.ac.il/about-scapi.php

Yehuda Lindell

Bar-Ilan University

August 20, 2013
CRYPTO 2013 Rump Session

Yehuda Lindell SCAPI 20/8/2013 1 / 13



Secure Computation in Practice

I For the last 2.5 decades, secure computation has been a
foundational theoretical topic of study

I Recently, interest has grown with respect to the practicality of
secure computation

I Governments, security organizations, industry,...

I In the last 5 years there has been incredible progress on
making secure computation practical

I Today we can run semi-honest secure computation for
problems like secure AES in a quarter of a second

I Protocols for malicious adversaries exist that give amazing
amortized complexity

I Every year there are new significant breakthroughs

I This is very surprising (and exciting): we now know that
secure computation can be practical for a reasonably wide
range of problems

Yehuda Lindell SCAPI 20/8/2013 2 / 13



Secure Computation in Practice

I For the last 2.5 decades, secure computation has been a
foundational theoretical topic of study

I Recently, interest has grown with respect to the practicality of
secure computation

I Governments, security organizations, industry,...

I In the last 5 years there has been incredible progress on
making secure computation practical

I Today we can run semi-honest secure computation for
problems like secure AES in a quarter of a second

I Protocols for malicious adversaries exist that give amazing
amortized complexity

I Every year there are new significant breakthroughs

I This is very surprising (and exciting): we now know that
secure computation can be practical for a reasonably wide
range of problems

Yehuda Lindell SCAPI 20/8/2013 2 / 13



Secure Computation in Practice

I For the last 2.5 decades, secure computation has been a
foundational theoretical topic of study

I Recently, interest has grown with respect to the practicality of
secure computation

I Governments, security organizations, industry,...

I In the last 5 years there has been incredible progress on
making secure computation practical

I Today we can run semi-honest secure computation for
problems like secure AES in a quarter of a second

I Protocols for malicious adversaries exist that give amazing
amortized complexity

I Every year there are new significant breakthroughs

I This is very surprising (and exciting): we now know that
secure computation can be practical for a reasonably wide
range of problems

Yehuda Lindell SCAPI 20/8/2013 2 / 13



Secure Computation in Practice

I For the last 2.5 decades, secure computation has been a
foundational theoretical topic of study

I Recently, interest has grown with respect to the practicality of
secure computation

I Governments, security organizations, industry,...

I In the last 5 years there has been incredible progress on
making secure computation practical

I Today we can run semi-honest secure computation for
problems like secure AES in a quarter of a second

I Protocols for malicious adversaries exist that give amazing
amortized complexity

I Every year there are new significant breakthroughs

I This is very surprising (and exciting): we now know that
secure computation can be practical for a reasonably wide
range of problems

Yehuda Lindell SCAPI 20/8/2013 2 / 13



Implementation of Secure Computation

I Most implementation projects are aimed at solving a specific
problem more efficiently or with better security

I SCAPI is an implementation project with no specific problem
in mind (it is a general-purpose secure computation library)

I SCAPI is open source; we have a long-term commitment (as
long as we have money) to the project (bug fixes, additional
functionality, improve existing implementations etc.)

Yehuda Lindell SCAPI 20/8/2013 3 / 13



Basic Design Decisions

I SCAPI is written in Java
I Suitable for large projects, and quick implementation
I Portability (e.g., secure computation between a mobile device

and a server)
I Existing libraries (e.g., Bouncy Castle)
I The JNI framework: can use libraries and primitives written in

native code (and thus inherit their efficiency)

Yehuda Lindell SCAPI 20/8/2013 4 / 13



Design Principles

I Flexibility:
I Cryptographers write protocols in abstract terms (OT,

commitment, PRF, etc.)
I SCAPI encourages implementation at this abstract level (work

with any “DLOG group” and afterwards instantiate with
concrete group and concrete library; e.g. EC-group from
Miracl)

I Can work at many different levels of abstraction, as desired

I Extendibility: can add support for any new libraries and
implementation by providing wrappers that implement the
defined interfaces

I Efficiency: via JNI can access fast low-level libraries like
Miracl, but work at the level of Java and with abstract objects

I Ease of use: SCAPI uses terminology that cryptographers are
used to; SCAPI is well documented and has been written
explicitly with other users in mind

Yehuda Lindell SCAPI 20/8/2013 5 / 13



Design Principles

I Flexibility:
I Cryptographers write protocols in abstract terms (OT,

commitment, PRF, etc.)
I SCAPI encourages implementation at this abstract level (work

with any “DLOG group” and afterwards instantiate with
concrete group and concrete library; e.g. EC-group from
Miracl)

I Can work at many different levels of abstraction, as desired

I Extendibility: can add support for any new libraries and
implementation by providing wrappers that implement the
defined interfaces

I Efficiency: via JNI can access fast low-level libraries like
Miracl, but work at the level of Java and with abstract objects

I Ease of use: SCAPI uses terminology that cryptographers are
used to; SCAPI is well documented and has been written
explicitly with other users in mind

Yehuda Lindell SCAPI 20/8/2013 5 / 13



Design Principles

I Flexibility:
I Cryptographers write protocols in abstract terms (OT,

commitment, PRF, etc.)
I SCAPI encourages implementation at this abstract level (work

with any “DLOG group” and afterwards instantiate with
concrete group and concrete library; e.g. EC-group from
Miracl)

I Can work at many different levels of abstraction, as desired

I Extendibility: can add support for any new libraries and
implementation by providing wrappers that implement the
defined interfaces

I Efficiency: via JNI can access fast low-level libraries like
Miracl, but work at the level of Java and with abstract objects

I Ease of use: SCAPI uses terminology that cryptographers are
used to; SCAPI is well documented and has been written
explicitly with other users in mind

Yehuda Lindell SCAPI 20/8/2013 5 / 13



Design Principles

I Flexibility:
I Cryptographers write protocols in abstract terms (OT,

commitment, PRF, etc.)
I SCAPI encourages implementation at this abstract level (work

with any “DLOG group” and afterwards instantiate with
concrete group and concrete library; e.g. EC-group from
Miracl)

I Can work at many different levels of abstraction, as desired

I Extendibility: can add support for any new libraries and
implementation by providing wrappers that implement the
defined interfaces

I Efficiency: via JNI can access fast low-level libraries like
Miracl, but work at the level of Java and with abstract objects

I Ease of use: SCAPI uses terminology that cryptographers are
used to; SCAPI is well documented and has been written
explicitly with other users in mind

Yehuda Lindell SCAPI 20/8/2013 5 / 13



Security Levels

I Consider an oblivious transfer protocol that uses a group, a
commitment scheme, and a hash function

I The theorem stating security of the protocol would say:
I Assume that DDH is hard in the group, the commitment is

perfectly binding, and the hash function is collision resistant.
I Then, the OT protocol is secure.

I SCAPI differentiates between security levels by defining
hierarchies of interfaces, and protocol constructors can
check them:

Yehuda Lindell SCAPI 20/8/2013 6 / 13



Security Levels

I Consider an oblivious transfer protocol that uses a group, a
commitment scheme, and a hash function

I The theorem stating security of the protocol would say:
I Assume that DDH is hard in the group, the commitment is

perfectly binding, and the hash function is collision resistant.
I Then, the OT protocol is secure.

I SCAPI differentiates between security levels by defining
hierarchies of interfaces, and protocol constructors can
check them:

Yehuda Lindell SCAPI 20/8/2013 6 / 13



Layers and Primitives

SCAPI has three layers

I Basic primitives (discrete log groups, PRFs, PRPs, hash,
universal hash, etc.)

I Non-interactive schemes (symmetric and asymmetric
encryption, MACs, signatures)

I Interactive protocols (oblivious transfer, sigma protocols, ZK,
ZKPOK, commitments, etc.)

Yehuda Lindell SCAPI 20/8/2013 7 / 13



Example Usage
The Cramer-Shoup Encryption Scheme

public interface CramerShoupDDHEnc extends AsymmetricEnc, Cca2 {

}

public CramerShoupAbs(DlogGroup dlogGroup, CryptographicHash hash, SecureRandom random){

//The Cramer-Shoup encryption scheme must work with a Dlog Group that has DDH security level

//and a Hash function that has CollisionResistant security level. If any of this conditions is not

//met then cannot construct an object of type Cramer-Shoup encryption scheme; therefore throw exception.

if(!(dlogGroup instanceof DDH)){

throw new IllegalArgumentException("The Dlog group has to have DDH security level");

}

if(!(hash instanceof CollisionResistant)){

throw new IllegalArgumentException("The hash function has to have CollisionResistant security level");

}

// Everything is correct, then sets the member variables and creates object.

this.dlogGroup = dlogGroup;

qMinusOne = dlogGroup.getOrder().subtract(BigInteger.ONE);

this.hash = hash;

this.random = random;

}

Yehuda Lindell SCAPI 20/8/2013 8 / 13



Example Usage
The Cramer-Shoup Encryption Scheme

public AsymmetricCiphertext encrypt(Plaintext plaintext){

/* Choose a random r in Zq; calculate u1 = g1^r, u2 = g2^r, e = (h^r)*msgEl

* Convert u1, u2, e to byte[] using the dlogGroup

* Compute alpha - the result of computing the hash function on the concatenation u1+u2+e.

* Calculate v = c^r * d^(r*alpha)

* Create and return an CramerShoupCiphertext object with u1, u2, e and v. */

...

GroupElement msgElement = ((GroupElementPlaintext) plaintext).getElement();

BigInteger r = chooseRandomR(); //Choose a random value between 0 and q-1 (q = group order)

GroupElement u1 = calcU1(r); //Does: dlogGroup.exponentiate(publicKey.getGenerator1(), r);

GroupElement u2 = calcU2(r); //Does: dlogGroup.exponentiate(publicKey.getGenerator(), r);

GroupElement hExpr = calcHExpR(r); //Does: dlogGroup.exponentiate(publicKey.getH(), r);

GroupElement e = dlogGroup.multiplyGroupElements(hExpr, msgElement);

byte[] u1ToByteArray = dlogGroup.mapAnyGroupElementToByteArray(u1);

byte[] u2ToByteArray = dlogGroup.mapAnyGroupElementToByteArray(u2);

byte[] eToByteArray = dlogGroup.mapAnyGroupElementToByteArray(e);

//Calculates the hash(u1 + u2 + e).

byte[] alpha = calcAlpha(u1ToByteArray, u2ToByteArray, eToByteArray);

GroupElement v = calcV(r, alpha); //Calculates v = c^r * d^(r*alpha).

//Creates and return an CramerShoupCiphertext object with u1, u2, e and v.

CramerShoupOnGroupElementCiphertext cipher = new CramerShoupOnGroupElementCiphertext(u1, u2, e, v);

return cipher;

}

Yehuda Lindell SCAPI 20/8/2013 9 / 13



Example Usage
The Cramer-Shoup Encryption Scheme

public static void main(String[] args) throws FactoriesException {

...

// Get parameters from config file:

CramerShoupTestConfig[] config = readConfigFile();

...

for (int i = 0; i < config.length; i++) {

result = runTest(config[i]);

out.println(result);

System.out.println(result);

}

...

}

Example from configuration file:

dlogGroup = DlogZpSafePrime

dlogProvider = CryptoPP

algorithmParameterSpec = 1024

hash = SHA-256

providerHash = BC

numTimesToEnc = 1000

dlogGroup = DlogECFp

dlogProvider = BC

algorithmParameterSpec = P-224

hash = SHA-1

providerHash = BC

numTimesToEnc = 1000

dlogGroup = DlogECFp

dlogProvider = Miracl

algorithmParameterSpec = P-224

hash = SHA-1

providerHash = BC

numTimesToEnc = 1000

Yehuda Lindell SCAPI 20/8/2013 10 / 13



Example Usage
The Cramer-Shoup Encryption Scheme

static public String runTest(CramerShoupTestConfig config) throws FactoriesException{

DlogGroup dlogGroup;

//Create the requested Dlog Group object. Do this via the factory.

//If no provider specified, take the SCAPI-defined default provider.

if(config.dlogProvider != null){

dlogGroup = DlogGroupFactory.getInstance().getObject(config.dlogGroup+

"("+config.algorithmParameterSpec+")", config.dlogProvider);

}else {

dlogGroup = DlogGroupFactory.getInstance().getObject(config.dlogGroup+

"("+config.algorithmParameterSpec+")");

}

CryptographicHash hash;

//Create the requested hash. Do this via the factory.

if(config.hashProvider != null){

hash = CryptographicHashFactory.getInstance().getObject(config.hash, config.hashProvider);

}else {

hash = CryptographicHashFactory.getInstance().getObject(config.hash);

}

//Create a random group element. This element will be encrypted several times as specified in

//config file and decrypted several times

GroupElement gEl = dlogGroup.createRandomElement();

//Create a Cramer Shoup Encryption/Decryption object. Do this directly by calling the relevant

//constructor. (Can be done instead via the factory).

ScCramerShoupDDHOnGroupElement enc = new ScCramerShoupDDHOnGroupElement(dlogGroup, hash);

Yehuda Lindell SCAPI 20/8/2013 11 / 13



Example Usage
The Cramer-Shoup Encryption Scheme

//Generate and set a suitable key.

KeyPair keyPair = enc.generateKey();

try {

enc.setKey(keyPair.getPublic(),keyPair.getPrivate());

} catch (InvalidKeyException e) {

e.printStackTrace();

}

//Wrap the group element we want to encrypt with a Plaintext object.

Plaintext plainText = new GroupElementPlaintext(gEl);

AsymmetricCiphertext cipher = null;

//Measure the time it takes to encrypt each time. Calculate and output the average running time.

long allTimes = 0;

long start = System.currentTimeMillis();

long stop = 0;

long duration = 0;

int encTestTimes = new Integer(config.numTimesToEnc).intValue();

for(int i = 0; i < encTestTimes; i++){

cipher = enc.encrypt(plainText);

stop = System.currentTimeMillis();

duration = stop - start;

start = stop;

allTimes += duration;

}

double encAvgTime = (double)allTimes/(double)encTestTimes;

//Repeat for decryption...

...

return result;

}

Yehuda Lindell SCAPI 20/8/2013 12 / 13



Results – Average of 1000 Runs
The Cramer-Shoup Encryption Scheme

Dlog Group

Type

Dlog

Provider

Dlog

Param
Hash

Function
Hash

Provider

Encrypt

Time (ms)

Decrypt

Time (ms)

DlogZpSafePrime CryptoPP 1024 SHA-256 BC 6.072 3.665

DlogZpSafePrime CryptoPP 2048 SHA-256 BC 43.818 26.289

DlogECFp BC P-224 SHA-1 BC 54.171 31.662

DlogECF2m BC B-233 SHA-1 BC 107.316 65.185

DlogECF2m BC K-233 SHA-1 BC 25.292 14.886

DlogECFp Miracl P-224 SHA-1 BC 6.571 3.929

DlogECF2m Miracl B-233 SHA-1 BC 5.819 3.652

DlogECF2m Miracl K-233 SHA-1 BC 2.753 1.787

Yehuda Lindell SCAPI 20/8/2013 13 / 13


