Delegatable PRFs and Applications

Aggelos Kiayias

Stavros Papadopoulos

Nikos Triandopoulos

Thomas Zacharias

Pseudorandom Function

fits an exponential table of random entries into just polynomial space (in the eyes of a poly observer)

Delegating a function?

 motivation : if a function is in table form we can arbitrarily cut and distribute it on any subsets of its domain:

Delegating a PRF?

how to cut and distribute the PRF 'backpack' in arbitrary ways?

Delegating a PRF?

how to cut and distribute the PRF 'backpack' in arbitrary ways?

Delegatable PRFs

 $\langle \mathcal{F}, T, C \rangle$ with respect to policy set \mathcal{P} $\mathcal{F} = \{f_k \mid k \in \{0,1\}^{\lambda}\}$ PRF family $T(k, P) \rightarrow \tau$ Trapdoor generation $C(\tau) \rightarrow \{f_k(x) \mid x \in P\}$ Delegated set reconstruction

 $|\tau| \ll |P|$ fundamental efficiency objective

PRF security $\mathcal{A}^{f_k(\cdot),T(k,\cdot)}$

Policy Privacy $\tau_P \approx \tau_{P'}$

Results

- Simple observation: GGM construction provides delegation w.r.t. prefix policies.
- Designing DPRF's becomes substantially more challenging for wider policies.
- We do 1D range policies (under general assumptions + policy privacy).

Many Applications

- Efficient **batch** searchable symmetric encryption.
- Broadcast encryption.
- RFid authentication.

•

Delegatable PRFs and Applications

http://eprint.iacr.org/2013/379

[to appear in ACM-CCS 2013]

Aggelos Kiayias

Stavros Papadopoulos

Nikos Triandopoulos

Thomas Zacharias