Shorter Quasi-Adaptive NIZK Proofs for Linear Subspaces

Charanjit Jutla and Arnab Roy

IBM Research Fujitsu Labs

Groth Sahai NIZK based on XDH

- Groups G_1 , G_2 with a bilinear map $e: G_1 \times G_2 \rightarrow G_T$
- CRS is 4 G₂ elements: $P, Q = P^a, R = P^b, S = P^{ab}$ or P^{ab+1}
- Proof of (g^x, f^x) in G_1 is:
 - Choose u at random
 - Commitment to witness: $Q^x P^u$, $S^x R^u$
 - Proof for each equation: g^u , f^u
- The commitment is hiding/binding depending on the choice of S
- Verification involves 12 pairings

Quasi-Adaptive NIZK

- CRS construction <u>depends</u> on the group constants
- No knowledge of trapdoor required for CRS construction
 - Such as the discrete logs of the group constants
- Zero-knowledge simulation also <u>does not require</u> discrete log of group constants
- Soundness proof <u>requires</u> discrete log of the group constants
 - Hence the group constants have to be generated 'honestly' formally, from a known witness samplable distribution
- In most practical situations this is fine
 - Typically hard language chosen at setup by an <u>honest</u> party

Our Proof System - DH example

- Version based on the XDH assumption:
 - Groups G_1 , G_2 with a bilinear map $e: G_1 \times G_2 \rightarrow G_T$
 - DDH assumption in G_2
 - Consider the same language in G_1 with base elements $(g, f) \in G_1^2$
 - CRS is
 - For prover, 1 G_1 element: $S = g^d f^{b^{-1}}$ for random d, b
 - For verifier, is 3 G_2 elements: g_2 , g_2^{bd} , g_2^{-b}
 - Proof of (g^x, f^x) is just S^x
 - Verification: $e(g^x, g_2^{bd}) \cdot e(f^x, g_2) \cdot e(S^x, g_2^{-b}) = 0_T$

Our Proof System - General

• In general, a linear subspace language is given as:

$$L = \{\vec{x}. A \in G_1^n \mid x \in \mathbb{Z}^t\}$$

- Additive group notation
- Here $A^{t \times n}$ is the parameter of the language
- For example, our DH language is:
 - x.[g f]
- The DLIN language (g^x, f^y, h^{x+y}) is:
 - $\begin{bmatrix} x & y \end{bmatrix} . \begin{bmatrix} \mathbf{g} & 0 & \mathbf{h} \\ 0 & \mathbf{f} & \mathbf{h} \end{bmatrix}$
- Think of the first t elements of a candidate l as the 'free' elements and the rest s = n-t elements as the dependent elements
- This amounts to assuming A as a full-ranked matrix with left $t \times t$ matrix non-singular

Our Proof System - General

- So, given $L = {\vec{x}. A^{t \times n} \in G_1^n \mid \vec{x}^{1 \times t} \in \mathbb{Z}^t}$
 - Generate CRS for prover: $CRS_p = A^{t \times n} \cdot \begin{bmatrix} D^{t \times s} \\ b^{-1} \cdot I^{s \times s} \end{bmatrix}$
 - Generate CRS for verifier: $CRS_v = \begin{bmatrix} b.D^{c \land s} \\ I^{s \times s} \\ -b.I^{s \times s} \end{bmatrix} \cdot \mathbf{g}_2$
- Now, given a candidate \vec{l} with witness \vec{x}
 - The proof is:

$$\vec{p} = \vec{x} \cdot CRS_p$$

• Verification is:

$$e([\vec{l}\ \vec{p}], CRS_v) = \mathbf{0}_T^{n+s}$$

Comparison

• n: the number of equations

• t: the number of witnesses

		Groth Sahai	Jutla R.
XDH	Proof Size	n+2t	n-t
	CRS Size	4	2t(n-t)+2
	#Pairings	2n(t+2)	(n-t)(t+2)
DLIN	Proof Size	2n+3t	2n-2t
	CRS Size	9	4t(n-t)+3
	#Pairings	3n(t+3)	2(n-t)(t+2)

Conceptual Comparison

- n : the number of equations
- t : the number of witnesses

Groth Sahai	Jutla R.	
CRS independent of language constants	CRS dependent on the language constants	
Each witness is taken to a higher dimensional space: • 2 for XDH, 3 for DLIN	No special treatment of witnesses. The <u>first t elements</u> of the candidate are themselves treated as witnesses.	
Each of the n equations is checked by pairing with the commitmentsAlong 2 dims for XDH, 3 for DLIN	Only the remaining n-t 'dependent' elements are checked by pairing • Along 1 dim for XDH, 2 for DLIN	
With hiding CRS: Perfect ZK, Comp Sound With binding CRS: Comp ZK, Perfect Sound	There is no analogous hiding/binding CRS concept. Perfect ZK, Comp Sound	
Since the properties are based on the indistinguishability of the two types of CRSes, the system is fundamentally based on a <u>decision</u> problem.	Soundness can be based on the following Computational problem: Given g_2, g_2^b in G_2 , find f , h in G_1 such that $h = f^b \neq 0_1$	

Results

- Extension for tag-based systems
 - Non-trivial since tag may be decided by adversary at runtime
 - Allows us to do Cramer-Shoup style smooth projective hashes
- Single-round password-based key exchanges, based on SXDH, with 7 group elements in each transmission
 - Previously 10 [JR12], 22 [KV11]
 - In this Crypto, 6 [Benhamouda et al] based on DDH
- Signature based on SXDH: 5 group elements
- Shortest (by ciphertext size) known IBE under SXDH: 4 group elements+1tag
 - Recently 5 group elements [CLLWW12]
- CCA-2 secure, publicly verifiable IBE under SXDH: 6 group elements + 1tag