An Improved Attack on 4-Round Even-Mansour with 2 Alternating Keys

- Itai Dinur¹, Orr Dunkelman^{1,2}, Nathan Keller³ and Adi Shamir¹
- ¹The Weizmann Institute, Israel
- ²University of Haifa, Israel
- ³Bar-Ilan University, Israel

The Even-Mansour Scheme (1991)

 Security: TD=2ⁿ using the slidex attack (Dunkelman, Keller and Shamir Eurocrypt '12)

The Iterated EM Scheme

• There are many possible key schedules

The Iterated EM Scheme

- The simplest key schedule uses only one key
- Concrete constructions: LED-64, Zorro

EM with 2 Alternating Keys

- We concentrate on the construction in which ${\rm K_1}$ and ${\rm K_2}$ alternate
- Concrete construction: LED-128 (12 steps)

4-Round EM with 2 Alternating Keys

 The best known previous attack on 4 rounds was presented at FSE '13 by Nikolic, Wang and Wu

The Previous Attack [NWW13]

- For each value of K₁
 - Partially encrypt the plaintexts through F_1 and partially decrypt the ciphertexts through F_4
 - Apply the slidex attack to the remaining EM scheme
- Total time complexity $T=2^n \cdot 2^n / D=2^{2n} / D$
- However T≥2^{1.5n}

- Assume that we are given the full D=2ⁿ codebook
- With high probability a magic fixed point Y->Y occurs for some magic (P,C) pair
- For each value of Y
 - Calculate X and Z
 - Since X+Z=P+C, search for this specific (P,C), calculate a suggestion for K₁=P+X and store the quartet K₁,Y,(P,C)

We fill a table of size
D=2ⁿ in 2ⁿ time

- Independently, for each value of V:
 - Calculate U and W
 - Obtain a suggestion for K₁=U+W
 - Search for K₁ in the table and obtain Y
 - Calculate a suggestion for K₂=Y+V
 - Test the key (K₁, K₂)

P,C

Y

 \mathbf{K}_1

- The time complexity is 2ⁿ given D=2ⁿ data
- For D<2ⁿ, repeat the attack for 2ⁿ/D magic transitions Y->Y+Δ, defined by 2ⁿ/D values of the magical Δ (generalizing the fixed point where Δ=0)
 - A similar idea was used in the slidex attack on 1-round EM to obtain the full tradeoff curve of TD=2ⁿ
- Total time complexity is 2²ⁿ/D for all T≥2ⁿ (not just T≥2^{1.5n})
 - The total memory complexity is D
- The security of the scheme is actually 2ⁿ !
 - The security of 4-step LED-128 is reduced from 2⁹⁶ to only 2⁶⁴

Thank you for your attention!