An Improved Attack on 4-Round Even-Mansour with 2 Alternating Keys

Itai Dinur ${ }^{1}$, Orr Dunkelman ${ }^{1,2}$, Nathan Keller ${ }^{3}$ and Adi Shamir ${ }^{1}$
${ }^{1}$ The Weizmann Institute, Israel
${ }^{2}$ University of Haifa, Israel
³Bar-Ilan University, Israel

The Even-Mansour Scheme (1991)

- Security: TD=2 ${ }^{n}$ using the slidex attack (Dunkelman, Keller and Shamir Eurocrypt '12)

The Iterated EM Scheme

- There are many possible key schedules

The Iterated EM Scheme

- The simplest key schedule uses only one key
- Concrete constructions: LED-64, Zorro

EM with 2 Alternating Keys

- We concentrate on the construction in which K_{1} and K_{2} alternate
- Concrete construction: LED-128 (12 steps)

4-Round EM with 2 Alternating Keys

- The best known previous attack on 4 rounds was presented at FSE '13 by Nikolic, Wang and Wu

The Previous Attack [NWW13]

- For each value of K_{1}
- Partially encrypt the plaintexts through F_{1} and partially decrypt the ciphertexts through F_{4}
- Apply the slidex attack to the remaining EM scheme
- Total time complexity $T=2^{n} \cdot 2^{n} / D=2^{2 n} / D$
- However $T \geq 2^{1.5 n}$

Our New Attack

- Assume that we are given the full $D=2^{n}$ codebook
- With high probability a magic fixed point Y->Y occurs for some magic (P, C) pair
- For each value of Y
- Calculate X and Z
- Since $X+Z=P+C$, search for this specific (P, C), calculate a suggestion for $K_{1}=P+X$ and store the quartet $K_{1}, Y,(P, C)$

Our New Attack

- We fill a table of size $D=2^{n}$ in 2^{n} time

Our New Attack

- Independently, for each value of V :
- Calculate U and W
- Obtain a suggestion for $\mathrm{K}_{1}=\mathrm{U}+\mathrm{W}$
- Search for K_{1} in the table and obtain Y
- Calculate a suggestion for $\mathrm{K}_{2}=\mathrm{Y}+\mathrm{V}$
- Test the key $\left(\mathrm{K}_{1}, \mathrm{~K}_{2}\right)$

K_{1}	Y	P, C
\vdots	\vdots	\vdots

Our New Attack

- The time complexity is 2^{n} given $D=2^{n}$ data
- For $D<2^{n}$, repeat the attack for $2^{n} / D$ magic transitions $Y->Y+\Delta$, defined by $2^{n} / D$ values of the magical Δ (generalizing the fixed point where $\Delta=0$)
- A similar idea was used in the slidex attack on 1-round EM to obtain the full tradeoff curve of TD=2n
- Total time complexity is $2^{2 n} / D$ for all $T \geq 2^{n}$ (not just $T \geq 2^{1.5 n}$)
- The total memory complexity is D
- The security of the scheme is actually 2^{n} !
- The security of 4-step LED-128 is reduced from 2^{96} to only 2^{64}

Thank you for your attention!

