How to keep a secret: Leakage Deterring Public Key Cryptography

Aggelos Kiayias Qiang Tang
Question:

• In a PKI setting, how can we prevent a key owner from leaking software that (partially) implements her cryptographic function?

• Objective: motivate accountability amongst users & prevent the sharing of keys.
“Give me the **ability** to read e-mails from pig!”
“Give me the ability to read e-mails from pig!”

“Decryption box that decrypts e-mails from pig only!”

CA
Leakage Deterring Cryptography

- **The Main Challenge**: the adversary is the secret-key owner.
Leakage Deterring Cryptography

• **The Main Challenge**: the adversary is the secret-key owner.

• Motivating idea for solution: self-enforcement (Dwork-Lotspiech-Naor’97) ... but **on steroids**.
Leakage Deterring Cryptography

User

\(s = \text{private data of } \bullet \)

\(pk, sk, s \)

\(\text{esk, epk, esk} \)

\(\text{CA} \)

Recoverability Algorithm

\(\text{epk} \)

\(\text{black box} \)

any partially working implementation

\(s \)
Effectively...

- We turned a *semantic property* of software (i.e. a *guarantee* that a program works in “some way”) into a *decryption key* that can unlock hidden information.
Results

• LD Public-key encryption.
 • based on homomorphic encryption:
 (constant ciphertexts)
 • and under general assumptions.
 (ciphertext proportional to min-entropy of plaintext distr.)
• LD Digital Signatures.
• LD Identification.

many open questions still remain!
How to keep a secret: Leakage Deterring Public Key Cryptography

[to appear in ACM CCS 2013]

Aggelos Kiayias
Qiang Tang