Weakness of $\mathbb{F}_{3^{6\cdot 509}}$ for Discrete Logarithm Cryptography

Gora Adj, Alfred Menezes*, Thomaz Oliveira and Francisco Rodríguez-Henríquez CINVESTAV-IPN *University of Waterloo

Crypto 2013 Rump session - August 20, 2013

Discrete logarithms over small char \mathbb{F}_{q^n} : Cryptographic importance

Efficient discrete log algorithms in small char \mathbb{F}_{q^n} fields have a direct negative impact on the security level that small characteristic symmetric pairings can offer:

- **(**) Supersingular elliptic curves over \mathbb{F}_{2^n} with embedding degree k = 4
- **②** Supersingular elliptic curves over \mathbb{F}_{3^n} with embedding degree k = 6
- 3 Supersingular genus-two curves over \mathbb{F}_{2^n} with embedding degree k = 12

Define a subexponential-time algorithm as one whose running time is of the form,

$$L_Q[\alpha, c] = e^{c(\log Q)^{\alpha}(\log \log Q)^{1-\alpha}},$$

where $Q = q^n$, q a small prime and $0 < \alpha < 1$, and c is a constant. $\alpha = 0$: polynomial $\alpha = 1$: fully exponential

Discrete logarithms over small char \mathbb{F}_{q^n} : Main developments in the last 30+ years

- Hellman-Reyneri 1982: Index-calculus $L_Q[\frac{1}{2}, 1.414]$
- Coppersmith 1984: $L_Q[\frac{1}{3}, 1.526]$
- Joux-Lercier (2006): $L_Q[\frac{1}{3}, 1.442]$ when q and n are "balanced"
- Hayashi et al. (2012): Used an improved version of the Joux-Lercier method to compute discrete logs over the field $\mathbb{F}_{3^{6.97}}$
- Joux (2012): $L_Q[\frac{1}{3}, 0.961]$ when *q* and *n* are "balanced"
- Joux (2013): $L_Q[\frac{1}{4} + o(1), c]$ when $Q = q^{2m}$ and $q \approx m$
- Göloğlu et al. (2013): somewhat similar to Joux 2013
- Barbulescu-Gaudry-Joux-Thomé (June 19 2013) A Quasi Polynomial time Algorithm (QPA), $(\log Q)^{O(\log \log Q)}$, faster than $L_Q[\alpha, c]$ for any $\alpha > 0$ and c > 0

• Several records broken in rapid succession by Joux, Göloğlu et al. and the Caramel team, the last of the series as of today: a discrete log computation over $\mathbb{F}_{2^{6128}} = \mathbb{F}_{(2^8)^{3\cdot 257}}$ Joux (May 21, 2013)

- Several records broken in rapid succession by Joux, Göloğlu et al. and the Caramel team, the last of the series as of today: a discrete log computation over $\mathbb{F}_{2^{6128}} = \mathbb{F}_{(2^8)^{3\cdot 257}}$ Joux (May 21, 2013)
- As a consequence of these astonishing results, a mainstream belief in the crypto community is that small characteristic symmetric pairings are broken, both in theory and in practice

- Several records broken in rapid succession by Joux, Göloğlu et al. and the Caramel team, the last of the series as of today: a discrete log computation over $\mathbb{F}_{2^{6128}} = \mathbb{F}_{(2^8)^{3\cdot 257}}$ Joux (May 21, 2013)
- As a consequence of these astonishing results, a mainstream belief in the crypto community is that small characteristic symmetric pairings are broken, both in theory and in practice
- More than that, some distinguished researchers have expressed in blogs/chats the opinion that all these new developments may sooner or later bring fatal consequences for integer factorization, which eventually would lead to the death of RSA

- Several records broken in rapid succession by Joux, Göloğlu et al. and the Caramel team, the last of the series as of today: a discrete log computation over $\mathbb{F}_{2^{6128}} = \mathbb{F}_{(2^8)^{3\cdot 257}}$ Joux (May 21, 2013)
- As a consequence of these astonishing results, a mainstream belief in the crypto community is that small characteristic symmetric pairings are broken, both in theory and in practice
- More than that, some distinguished researchers have expressed in blogs/chats the opinion that all these new developments may sooner or later bring fatal consequences for integer factorization, which eventually would lead to the death of RSA
- Nevertheless, none of the records mentioned above have attacked finite field extensions that have been previously proposed for performing pairing-based cryptography in small char

Our question

Our question: can the new attacks or a combination of them be effectively applied to compute discrete logs in finite field extensions of interest in pairing-based cryptography?

A B M A B M

A positive answer: Announcing the weak field $\mathbb{F}_{3^{6\cdot 509}}$

Finding logarithms of linear polynomials	
Relation generation	$2^{22}M_r$
Linear algebra	$2^{48}M_r$
Finding logarithms of irreducible quadratic polynomials	
Relation generation	$2^{50}M_r$
Linear algebra	$2^{67}M_r$
Descent	
Continued-fraction (254 to 30)	$2^{71}M_r$
Classical (30 to 15)	$2^{71}M_r$
Classical (15 to 11)	$2^{73}M_r$
QPA (11 to 7)	$2^{63}M_r$
Gröbner bases (7 to 4)	$2^{65}M_r$
Gröbner bases (4 to 3)	$2^{64}M_r$
Gröbner bases (3 to 2)	$2^{69}M_r$

Table: Estimated costs of the main steps of the new DLP algorithm for computing discrete logarithms in $\mathbb{F}_{(3^6)^{2\cdot 509}}$. M_r denotes the costs of a multiplication modulo the 804-bit prime $r = (3^{509} - 3^{255} + 1)/7$. We also assume that 2^{22} multiplications modulo r can be performed in 1 second

• When applied to the fields $\mathbb{F}_{2^{12\cdot367}}$ and $\mathbb{F}_{2^{12\cdot439}}$, the new algorithm renders a complexity slightly worse than the old Joux-Lercier method. However, the new method is much more amenable for parallelization, and it is expected to outperform Joux-Lercier provided that a massive number of processors (e.g., 2^{30} processors) are at the disposition of the attacker

- When applied to the fields $\mathbb{F}_{2^{12\cdot367}}$ and $\mathbb{F}_{2^{12\cdot439}}$, the new algorithm renders a complexity slightly worse than the old Joux-Lercier method. However, the new method is much more amenable for parallelization, and it is expected to outperform Joux-Lercier provided that a massive number of processors (e.g., 2^{30} processors) are at the disposition of the attacker
- Our preliminary analysis suggests that the new algorithm is ineffective for computing discrete logs in $\mathbb{F}_{2^{4\cdot 1223}}$, a field that not long ago was assumed to offer a security level of 128 bits

- When applied to the fields $\mathbb{F}_{2^{12\cdot367}}$ and $\mathbb{F}_{2^{12\cdot439}}$, the new algorithm renders a complexity slightly worse than the old Joux-Lercier method. However, the new method is much more amenable for parallelization, and it is expected to outperform Joux-Lercier provided that a massive number of processors (e.g., 2^{30} processors) are at the disposition of the attacker
- Our preliminary analysis suggests that the new algorithm is ineffective for computing discrete logs in F₂₄₋₁₂₂₃, a field that not long ago was assumed to offer a security level of 128 bits (Maybe it still does!)

- When applied to the fields $\mathbb{F}_{2^{12\cdot367}}$ and $\mathbb{F}_{2^{12\cdot439}}$, the new algorithm renders a complexity slightly worse than the old Joux-Lercier method. However, the new method is much more amenable for parallelization, and it is expected to outperform Joux-Lercier provided that a massive number of processors (e.g., 2^{30} processors) are at the disposition of the attacker
- Our preliminary analysis suggests that the new algorithm is ineffective for computing discrete logs in F_{24·1223}, a field that not long ago was assumed to offer a security level of 128 bits (Maybe it still does!)
- All the technical details are discussed in the eprint report 2013/446