Weakness of $\mathbb{F}_{36 \cdot 509}$ for Discrete Logarithm Cryptography

Gora Adj, Alfred Menezes*, Thomaz Oliveira and Francisco Rodríguez-Henríquez CINVESTAV-IPN
*University of Waterloo
Crypto 2013 Rump session - August 20, 2013

Discrete logarithms over small char $\mathbb{F}_{q^{n}}$: Cryptographic importance

Efficient discrete \log algorithms in small char $\mathbb{F}_{q^{n}}$ fields have a direct negative impact on the security level that small characteristic symmetric pairings can offer:
(1) Supersingular elliptic curves over $\mathbb{F}_{2^{n}}$ with embedding degree $k=4$
(2) Supersingular elliptic curves over $\mathbb{F}_{3^{n}}$ with embedding degree $k=6$
(3) Supersingular genus-two curves over $\mathbb{F}_{2^{n}}$ with embedding degree $k=12$

Define a subexponential-time algorithm as one whose running time is of the form,

$$
L_{Q}[\alpha, c]=e^{c(\log Q)^{\alpha}(\log \log Q)^{1-\alpha}},
$$

where $Q=q^{n}, q$ a small prime and $0<\alpha<1$, and c is a constant.
$\alpha=0$: polynomial $\quad \alpha=1$: fully exponential

Discrete logarithms over small char $\mathbb{F}_{q^{n}}$: Main developments in the last 30+ years

- Hellman-Reyneri 1982: Index-calculus $L_{Q}\left[\frac{1}{2}, 1.414\right]$
- Coppersmith 1984: $L_{Q}\left[\frac{1}{3}, 1.526\right]$
- Joux-Lercier (2006): $L_{Q}\left[\frac{1}{3}, 1.442\right]$ when q and n are "balanced"
- Hayashi et al. (2012): Used an improved version of the Joux-Lercier method to compute discrete logs over the field $\mathbb{F}_{36.97}$
- Joux (2012): $L_{Q}\left[\frac{1}{3}, 0.961\right]$ when q and n are "balanced"
- Joux (2013): $L_{Q}\left[\frac{1}{4}+o(1), c\right]$ when $Q=q^{2 m}$ and $q \approx m$
- Göloğlu et al. (2013): somewhat similar to Joux 2013
- Barbulescu-Gaudry-Joux-Thomé (June 19 2013)

A Quasi Polynomial time Algorithm (QPA), $(\log Q)^{O(\log \log Q) \text {, }}$ faster than $L_{Q}[\alpha, c]$ for any $\alpha>0$ and $c>0$

A mainstream belief in the crypto community

- Several records broken in rapid succession by Joux, Göloğlu et al. and the Caramel team, the last of the series as of today: a discrete log computation over $\mathbb{F}_{2^{6128}}=\mathbb{F}_{\left(2^{8}\right)^{3.257}}$ Joux (May 21, 2013)

A mainstream belief in the crypto community

- Several records broken in rapid succession by Joux, Göloğlu et al. and the Caramel team, the last of the series as of today: a discrete log computation over $\mathbb{F}_{2^{6128}}=\mathbb{F}_{\left(2^{8}\right)^{3.257}}$ Joux (May 21, 2013)
- As a consequence of these astonishing results, a mainstream belief in the crypto community is that small characteristic symmetric pairings are broken, both in theory and in practice

A mainstream belief in the crypto community

- Several records broken in rapid succession by Joux, Göloğlu et al. and the Caramel team, the last of the series as of today: a discrete log computation over $\mathbb{F}_{2^{6128}}=\mathbb{F}_{\left(2^{8}\right)^{3.257}}$ Joux (May 21, 2013)
- As a consequence of these astonishing results, a mainstream belief in the crypto community is that small characteristic symmetric pairings are broken, both in theory and in practice
- More than that, some distinguished researchers have expressed in blogs/chats the opinion that all these new developments may sooner or later bring fatal consequences for integer factorization, which eventually would lead to the death of RSA

A mainstream belief in the crypto community

- Several records broken in rapid succession by Joux, Göloğlu et al. and the Caramel team, the last of the series as of today: a discrete log computation over $\mathbb{F}_{2^{6128}}=\mathbb{F}_{\left(2^{8}\right)^{3.257}}$ Joux (May 21, 2013)
- As a consequence of these astonishing results, a mainstream belief in the crypto community is that small characteristic symmetric pairings are broken, both in theory and in practice
- More than that, some distinguished researchers have expressed in blogs/chats the opinion that all these new developments may sooner or later bring fatal consequences for integer factorization, which eventually would lead to the death of RSA
- Nevertheless, none of the records mentioned above have attacked finite field extensions that have been previously proposed for performing pairing-based cryptography in small char

Our question

Our question: can the new attacks or a combination of them be effectively applied to compute discrete logs in finite field extensions of interest in pairing-based cryptography?

A positive answer: Announcing the weak field $\mathbb{F}_{36 \cdot 509}$

Finding logarithms of linear polynomials

Relation generation	$2^{22} M_{r}$
Linear algebra	$2^{48} M_{r}$

Finding logarithms of irreducible quadratic polynomials

Relation generation	$2^{50} M_{r}$
Linear algebra	$2^{67} M_{r}$

Descent
Continued-fraction (254 to 30) $\quad 2^{71} M_{r}$
Classical (30 to 15) $\quad 2^{71} M_{r}$

Classical (15 to 11) $\quad 2^{73} M_{r}$
QPA (11 to 7) $\quad 2^{63} M_{r}$
Gröbner bases (7 to 4) $\quad 2^{65} M_{r}$
Gröbner bases (4 to 3) $\quad 2^{64} M_{r}$
Gröbner bases (3 to 2) $\quad 2^{69} M_{r}$
Table: Estimated costs of the main steps of the new DLP algorithm for computing discrete logarithms in $\mathbb{F}_{\left(3^{6}\right)^{2 \cdot 509}} . M_{r}$ denotes the costs of a multiplication modulo the 804 -bit prime $r=\left(3^{509}-3^{255}+1\right) / 7$. We also assume that 2^{22} multiplications modulo r can be performed in 1 second

Mixed positive/negative answers for other fields

- When applied to the fields $\mathbb{F}_{2^{12 \cdot 367}}$ and $\mathbb{F}_{2^{12.439}}$, the new algorithm renders a complexity slightly worse than the old Joux-Lercier method. However, the new method is much more amenable for parallelization, and it is expected to outperform Joux-Lercier provided that a massive number of processors (e.g., 2^{30} processors) are at the disposition of the attacker

Mixed positive/negative answers for other fields

- When applied to the fields $\mathbb{F}_{2^{12 \cdot 367}}$ and $\mathbb{F}_{2^{12.439}}$, the new algorithm renders a complexity slightly worse than the old Joux-Lercier method. However, the new method is much more amenable for parallelization, and it is expected to outperform Joux-Lercier provided that a massive number of processors (e.g., 2^{30} processors) are at the disposition of the attacker
- Our preliminary analysis suggests that the new algorithm is ineffective for computing discrete logs in $\mathbb{F}_{2^{4 \cdot 1223}}$, a field that not long ago was assumed to offer a security level of 128 bits

Mixed positive/negative answers for other fields

- When applied to the fields $\mathbb{F}_{2^{12 \cdot 367}}$ and $\mathbb{F}_{2^{12.439}}$, the new algorithm renders a complexity slightly worse than the old Joux-Lercier method. However, the new method is much more amenable for parallelization, and it is expected to outperform Joux-Lercier provided that a massive number of processors (e.g., 2^{30} processors) are at the disposition of the attacker
- Our preliminary analysis suggests that the new algorithm is ineffective for computing discrete logs in $\mathbb{F}_{2^{4 \cdot 1223}}$, a field that not long ago was assumed to offer a security level of 128 bits
(Maybe it still does!)

Mixed positive/negative answers for other fields

- When applied to the fields $\mathbb{F}_{2^{12 \cdot 367}}$ and $\mathbb{F}_{2^{12.439}}$, the new algorithm renders a complexity slightly worse than the old Joux-Lercier method. However, the new method is much more amenable for parallelization, and it is expected to outperform Joux-Lercier provided that a massive number of processors (e.g., 2^{30} processors) are at the disposition of the attacker
- Our preliminary analysis suggests that the new algorithm is ineffective for computing discrete logs in $\mathbb{F}_{2^{4 \cdot 1223}}$, a field that not long ago was assumed to offer a security level of 128 bits
(Maybe it still does!)
- All the technical details are discussed in the eprint report 2013/446

